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Abstract. We propose an extension of Gaussian mixture models in the statistical-mechanical
point of view. The conventional Gaussian mixture models are formulated to divide all points
in given data to some kinds of classes. We introduce some quantum states constructed by
superposing conventional classes in linear combinations. Our extension can provide a new
algorithm in classifications of data by means of linear response formulas in the statistical
mechanics.

1. Introduction
Statistical approaches are applied to data mining in computer sciences. Data in real

worlds include some fluctuations and it is expected to employee some statistical methods to
do systematical approaches for the treatments of such data. Many statistical approaches for
inferences in data mining are based on Bayesian formulas and maximum likelihood[1]. One of
fundamental approaches is a classification by means of Gaussian mixture models. In Gaussian
mixture models, each data point yields from one of Gaussian distributions with averages and
variances. If we hope to divide a given data to three kinds of classes, we have to prepare three
kinds of Gaussian distributions.

For the classification of given data by means of Gaussian mixture models, a temperature
has been introduced in order to search the maximal point of hyperparameters for the marginal
likelihood by using an iterative procedure[2]. The procedure is proposed with being based on
an idea of simulated annealing methods in the Markov random fields.

As one of the other physical approaches to find optimal solutions for massive probabilistic
inferences, we have quantum annealing method. Quantum annealing method is formulated by
replacing thermal effect by quantum effect in the simulated annealing[3, 4, 5, 6, 7]. Quantum
annealing has been introduced in the probabilistic image processing as well as optimization
problems[8]. It has been proved that the quantum annealing can find an optimal solution
more quickly than the simulated annealing[9]. Moreover, some quantum error correcting codes
are proposed and some performance limits have been given by using a gauge theory in the
physics[10, 11, 12]. On the other hand, an edge state in image processing has been extended to a
quantum state[13]. Thus, many physicists are interested in applications of quantum fluctuations
to computer sciences.
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In applying quantum effects to computer sciences, we have mainly two different viewpoints.
One of them is an annealing and is applied to find an optimal solution in massive computational
problems. The other is to adopt a quantum state itself as a state in computational models or
probabilistic models. Our data often include a point to which it is difficult to assign one label
in the statistical classification. It is interesting to introduce quantum states as label states in
the classifications in both statistical and physical viewpoints.

In this paper, we extend conventional Gaussian mixture models to quantum Gaussian mixture
models and give an algorithm to determine the estimates of hyperparameters in our proposed
models. In section 2, we summarize conventional Gaussian mixture models and the scheme of
determination of hyperparameters in the statistical framework. In section 3, we propose quantum
Gaussian mixture models. The probability density functions of conventional Gaussian mixture
models are expressed in terms of density matrix representations. Density matrix representations
of conventional Gaussian mixture models are given by diagonal matrices. We introduce off-
diagonal elements in the reformulated density matrix representation of Gaussian mixture model.
In order to derive the extremum condition of the marginal likelihood in quantum Gaussian
mixture model with respect to hyperparameters, we adopt linear response formulas for density
matrices. In sections 4 and 5, we give some numerical experiments and concluding remarks,
respectively.

2. Conventional Gaussian Mixture Model
In the present section, we explain a classification of given data by using the conventional

Gaussian mixture model. The framework is based on maximum likelihood estimation and
Bayesian formula in the statistics.

We introduce a set of data consisting of N real number y0, y1, · · ·, yN−1. The set of data is
expressed in terms of an N -dimensional column vector y = (y0, y1, · · ·, yN−1)t. We consider to
classify the given data to K kinds of classes. A label assigned to yi is expressed by xi. and the
set of labels is expressed in terms of an N -dimensional column vector x = (x0, x1, · · ·, xN−1)t.
The variable yi can take any real value in the interval (−∞,+∞). An integers of 0, 1, 2, · · ·,K−1
is assigned to the label variable xi.

Now we consider to infer how a given data is classified to K kinds of classes by means
of Bayes formula and maximum likelihood estimation. x and y can be regarded as sets of
random variables for parameters and data, respectively. We assume that a set of parameters x
is generated by according to the following prior probability:

P(x|α) =
N−1∏
i=0

K−1∑
k=0

αkδxi,k, (1)

where the set α ≡ {α0, α1, · · ·, αK−1} satisfies the condition
∑K−1

k=0 αk = 1 and δa,b is Kronecker’s
delta. Given data y are generated from parameters x by according to the following conditional
probability:

P(y|x,μ,σ) =
N−1∏
i=0

gxi(yi|μ,σ), (2)

gk(yi|μ,σ) ≡ 1√
2πσk

exp( − 1
2σk

2
(yi − μk)2). (3)

In the statistics, the set μ ≡ {μ0, μ1, · · ·, μK−1}, σ ≡ {σ0, σ1, · · ·, σK−1} as well as α ≡
{α0, α1, · · ·, αK−1} are referred to as hyperparameters. Equations (1) and (2) give us the following
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joint probability of x and y:

P(x,y|α,μ,σ) = P(y|x,μ,σ)P(x|α) =
N−1∏
i=0

αxigxi(yi|σ,α) (4)

In the statistical point of view, the estimates of α, μ and σ, α̂ ≡ {α̂0, α̂1, · · ·, α̂K−1},
μ̂ ≡ {μ̂0, μ̂1, · · ·, μ̂K−1} and σ̂ ≡ {σ̂0, σ̂1, · · ·, σ̂K−1}, can be determined from given data y
so as to maximizing the marginal likelihood defined by

P(y|α,μ,σ) =
K−1∑
x0=0

K−1∑
x2=0

· · ·
K−1∑

xN−1=0

P(x,y|α,μ,σ) =
N−1∏
i=0

K−1∑
xi=0

αxigxi(yi|σ,α) (5)

The extremum condition of P(y|α,μ,σ) with respect to α, μ, σ can be given as

μ̂k =
∑N−1

i=0 yiΨi(k|μ̂, σ̂, α̂)∑N−1
i=0 Ψi(k|μ̂, σ̂, α̂)

, (6)

α̂k =
1
N

N−1∑
i=0

Ψi(k|μ̂, σ̂, α̂), (7)

σ̂2
k =

∑N−1
i=0 (yi − μ̂k)2Ψi(k|μ̂, σ̂, α̂)∑N−1

i=0 Ψi(k|μ̂, σ̂, α̂)
, (8)

Ψi(k|μ,σ,α) ≡ αkgk(yi|μ,σ)∑K−1
k=0 αkgk(yi|μ,σ)

. (9)

By solving equations (6)-(8) in the iteration method numerically, we obtain the estimates μ̂, σ̂
and α̂ for given data y.

By using Bayesian formula, we derive a posterior probability of the set of parameter x for
given data y as follows:

P(x|y,μ,σ,α) =
P(x,y|μ,σ,α)
P(y|μ,σ,α)

=
N−1∏
i=0

Ψi(xi|μ,σ,α). (10)

The estimates of x, x̂ ≡ (x̂1, x̂2, · · ·, x̂N−1)t can be determined so as to maximizing the posterior
probability P(x|y,μ,σ,α) with respect to x.

3. Quantum Gaussian Mixture Model
In this section, we extend conventional Gaussian mixture models to quantum Gaussian

mixture models. Our extension is based on the construction of quantum states by
superposing conventional classes in the linear combinations. We give also the determination of
hyperparameters by means of the maximization of likelihood for the quantum Gaussian mixture
models.

For any matrix A, the exponential function eA and the logarithm function ln(A) are defined
by

eA ≡
+∞∑
n=0

1
n!

An, lnA ≡ −
+∞∑
n=1

1
n

(I − A)n. (11)
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We introduce the following two K×K real diagonal matrices F and G(yi):

F ≡ −

⎛
⎜⎜⎜⎝

lnα0 0 · · · 0
0 lnα1 · · · 0
...

...
...

0 0 · · · lnαK−1

⎞
⎟⎟⎟⎠ , (12)

G(yi) ≡

⎛
⎜⎜⎜⎝

g0(yi) 0 · · · 0
0 g1(yi) · · · 0
...

...
...

0 0 · · · gK−1(yi)

⎞
⎟⎟⎟⎠ . (13)

The marginal likelihood P(y|μ,σ,α) in equation (5) is replaced by the following density matrix:

P(y|μ,σ,α) =
N−1∏
i=0

tre−H(yi)

tre−F
, (14)

where

H(yi) ≡ F − lnG(yi)

= −

⎛
⎜⎜⎜⎝

ln(α0g0(yi)) 0 · · · 0
0 ln(α1g1(yi)) · · · 0
...

...
...

0 0 · · · ln(αK−1gK−1(yi))

⎞
⎟⎟⎟⎠ . (15)

Now we extend the diagonal matrix F to any K×K real symmetric matrix as follows:

F = −

⎛
⎜⎜⎜⎝

lnα0 γ · · · γ
γ lnα1 · · · γ
...

...
. . .

...
γ γ · · · lnαK−1

⎞
⎟⎟⎟⎠ .

(16)

The N×N matrix H(yi) can be rewritten as

H(yi) ≡ −
K−1∑
k=0

K−1∑
k′=0

B
(i)
kk′Xkk′

= −

⎛
⎜⎜⎜⎝

ln(α0g0(yi)) γ · · · γ
γ ln(α1g1(yi)) · · · γ
...

...
...

γ γ · · · ln(αK−1gK−1(yi))

⎞
⎟⎟⎟⎠ , (17)

where Xk,k′ is a K×K matrix whose (l, l′)-component 〈l|Xkk′ |l′〉 (l, l′ = 0, 1, · · ·,K − 1) are
defines by

〈l|Xkk′|l′〉 ≡ δk,lδk′,l′ , (18)
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and the coefficients Bk,k′ (k, k′ = 0, 1, · · ·,K − 1) are defined by

B
(i)
kk ≡ ln(αkgk(yi)), B

(i)
kk′ ≡ γ (k �= k′). (19)

The function P(y|μ,σ,α) defined by equations (14) and (17) does not always satisfy the
normalization condition

∫ +∞
−∞

∫ +∞
−∞ · · ·∫ +∞

−∞ P(y|μ,σ,α)dy0dy1· · ·dyN−1=1, so that it is not
regarded as a probability density function of data set y In the present paper, we regard
the function P(y|μ,σ,α) as a marginal likelihood approximately and formulate a quantum-
mechanical extension of Gaussian mixture model in the present paper.

By using the linear response theory, we have

∂

∂B
(i)
kk′

ln(tre−H(yi)) =
1

tre−H(yi)
tr

∫ 1

0
e−(1−λ)H(yi)Xkk′e−λH(yi)dλ =

trXkk′e−H(yi)

tre−H(yi)
. (20)

The extremum conditions for the marginal likelihood P(y|μ,σ,α) with respect to μ, σ and α
can be derived as

μk =

∑N−1
i=0 yi( trXkke−H (yi)

tr e−H (yi)
)∑N−1

i=0 ( trXkke−H (yi)

tr e−H (yi)
)

, (21)

σk
2 =

∑N−1
i=0 (yi − μk)2( trXkke−H (yi)

tr e−H (yi)
)∑N−1

i=0 ( trXkke−H (yi)

tr e−H (yi)
)

, (22)

αk = exp
(
trXk,kln(

1
N

N−1∑
i=0

e−H(yi)

tre−H(yi)
)
)
. (23)

For given data y, we obtain estimates of μ, σ and α by means of the iteration method
numerically. We remark that equations (21)-(23) can be reduced to equations (6)-(8) by setting
γ = 0.

When we introduce the energy matrix H(yi), the posterior distribution P(x|y,μ,σ,α) can
be also replaced by

P (y,μ,σ,α) =
e−E

tre−E
. (24)

E ≡ H(y0)⊗I⊗I⊗· · ·⊗I + I⊗H(y1)⊗I⊗· · ·⊗I

+I⊗I⊗H(y2)⊗· · ·⊗I + · · · + I⊗I⊗I⊗· · ·⊗H(yN−1) (25)

The estimates of label for yi can be given as an K-dimensional eigenvector x̂i =
(x̂(0)

i , x̂
(1)
i , · · ·, x̂(K−1)

i )t which corresponds to the minimal eigenvalue of K×K local energy matrix
H(yi). Here all eigenvectors should be normalized in their absolute values. The eigenvector
which corresponds to the minimal eigenvalue of KN×KN global energy matrix E is given by a
KN -dimensional vector

x̂ = x̂0⊗x̂1⊗x̂2⊗· · ·⊗x̂N−1. (26)
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4. Numerical Experiments
In this section we give some numerical experiments for estimating the hyperparameters α, μ

and σ when the data y is set to a standard image. The obtained set of label can be regarded
as a segmented image for a given standard image.

By using equations (21)-(23), we do some numerical experiments for a monochrome image
given in figure 1(a). In table 1, we give estimates of hyperparameters, α̂, μ̂ and σ̂ and the
values of logarithm of marginal likelihood, L(y, α̂, μ̂, σ̂) ≡ 1

N lnP(y|α̂, μ̂, σ̂) for K = 3. For the
estimates, α = α̂, μ = μ̂ and σ = σ̂, eigenvectors x̂i = (x̂(0)

i , x̂
(1)
i , x̂

(2)
i )t which corresponds to

the minimal eigenvalue of 3×3 matrix H(yi) are drawn in figure 1(b)-(c). In figure 1(b)-(c),
x̂i = (1, 0, 0)t, x̂i = (0, 1, 0)t and x̂i = (0, 0, 1)t correspond to red, green and blue, respectively.

(a) (b)

(c) (d)

Figure 1. Image segmentation based on the quantum Gaussian mixture model for K = 3.
(a) Original image (256 grades, N = 256×256) (b) Segmented image x̂ for γ = 0. (c) Segmented
image x̂ for γ = 0.2. (d) Segmented image x̂ for γ = 0.4.

The probability density function P(yi|α,μ,σ) ≡ tre−H(yi)/tre−F and histogram for the
given image y are shown in figure 2. In the curves of figure 2, the values of γ are set to 0, 0.2,
and 0.4, respectively. In γ = 0.2, we can find a very soft peak at yi = 72 around. The soft peak
include some regions which are segmented as red areas for γ = 0.2 and are segmented as green
areas.

5. Concluding Remarks
In this paper, we have given an extension of the probability density function for conventional

Gaussian mixture model to a density matrix. The formulation is based on Bayesian statistics
and the maximum likelihood method. In the estimation of hyperparameters, we have to derive
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Table 1. Estimates of hyperparameters, α̂, μ̂ and σ̂ and values of L(y, α̂, μ̂, σ̂) ≡
1
N lnP(y|α̂, μ̂, σ̂).

γ L(y, α̂, μ̂, σ̂) α̂k μ̂k σ̂k

k = 0 0.0879 36.03 9.08
0 −5.3036 k = 1 0.6526 107.17 24.76

k = 2 0.2595 195.33 36.55

k = 0 0.2679 72.62 32.94
0.2 −5.3492 k = 1 0.3875 110.92 18.17

k = 2 0.3267 181.42 43.58

k = 0 0.2251 87.37 39.76
0.4 −5.3814 k = 1 0.2311 107.53 17.29

k = 2 0.4437 152.11 58.59

the extremum conditions and we employee the linear response formulas for quantum-statistical
models. We have constructed the estimation algorithm as an iterative procedure and have given
some numerical experiments.

The function P(y|μ,σ,α) defined by equations (14) and (17) does not always satisfy the
normalization condition so that it is not regarded as a probability density function of data set
y In order to guarantee the normalization condition, we have to define

P(y|μ,σ,α) =
N−1∏
i=0

tre−H(yi)∫ +∞
−∞ tre−H(zi)dzi

, (27)

instead of equation (14). We should formulate our quantum-mechanical extension for equation
(27). However, it may be difficult to calculate the integrals

∫ +∞
−∞ tre−H(zi)dzi analytically. It

remains as a future problem.
Density matrices include some quantum effects and are based on states constructed by

superposing some kinds of classical states. For example, when we denote three possible classical
states in terms of three-dimensional vectors (1, 0, 0)t, (0, 1, 0)t and (0, 0, 1)t, all possible quantum
states are expressed in terms of linear combinations of the three vectors in every extension to
density matrix. In some capacities, quantum statistical models are expected to be beyond
the conventional statistical models. For example, quantum statistical models may give us new
optimal solutions in statistical inferences. In fact, our numerical experiments yields some nice
segmentation results by introducing quantum states in the Gaussian mixture model. Quantum
Gaussian mixture model has succeeded in splitting some regions from the background, though
the conventional Gaussian mixture model cannot split the corresponding regions from the
background.

In the present problems in this paper, we assume not to include interactions between any
pairs of components yi and yj in given data y = (y0, y1, · · ·, yN−1)t. Moreover we do not
consider interactions between any pairs of elements in the set of labels. Thus the density matrix
in equation (14) has been factorized with respect to each i. Though the energy matrix H in
equation (25) seems to be an NK×NK matrix, the rank is just K. Such problems can be
regarded as one-body problems in the statistical mechanics. If we consider interactions between
some pairs of components, in the given data or in the set of label to estimate, it is hard to
express the density matrix in terms of a factorizable form as shown in equation (14). When
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Figure 2. Curves of the probability density function P(yi|α,μ,σ) ≡ tre−H(yi)/tr e−F and
histogram for the given image y in figure 1(a). The curves of red line show the values of
P(yi|α̂, μ̂, σ̂) for various values of yi in the interval [0, 255]. The hyperparameter γ is set to 0,
0.2 and 0.4. The histogram of the given image y in figure 1 is expressed in terms of green area
in each graph.

the energy matrix H is given in such a way, the rank of H is not K any more and we have
to diagonalize the NK×NK matrix H. Many authors have investigated belief propagation
and the other advanced mean-field methods to statistical inferences[15, 16, 17, 18, 19]. It is
interesting to apply quantum belief propagation and the other advanced quantum mean-field
methods to such cases as an approximate algorithm. Suzuki et al. investigated some quantum
annealing algorithms by means of a quantum statistical version of Bethe approximation[20]. One
of quantum statistical-mechanical extensions of belief propagations corresponds to a quantum
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cluster variation method[21]. It is interesting to apply a quantum cluster variation method to
statistical inferences with quantum states and some interactions in the computer sciences. This
is one of future problems.
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[5] Santoro G E, Martoňák R, Tosatti E and Car R 2002 Science 295 2427
[6] Santoro G E and Tossati E 2006 J. Phys. A: Math. Gen. 39 R393
[7] Suzuki S and Okada M 2005 J. Phys. Soc. Jpn. 74 1649
[8] Tanaka K and Horiguchi T 1997 IEICE Transactions (A), J80-A, 2117 (in Japanese); translated in

Electronics and Communications in Japan, Part 3: Fundamental Electronic Science, 83, 84
[9] Morita S and Nishimori H 2006 J. Phys. A: Math. Gen. 39 13903

[10] Dennis E, Kitaev A, Landahl A and Preskill J 2002 J. Phys. A: Math. Gen. 43 4452
[11] Nishimori H and Sollich P 2004 J. Phys. Soc. Jpn 73 2701
[12] Takeda K and Nishimori H 2004 Nucl. Phys. B 686 377
[13] Tanaka K 2002 J. Phys. A: Math. Gen. 35 R81
[14] Nishimori H 2001 Statistical Physics of Spin Glasses and Information Processing, —An Introduction— (New

York: Oxford University Press)
[15] Opper M and Saad D (eds) 2001 Advanced Mean Field Methods — Theory and Practice — (Cambridge:

MIT Press)
[16] Tanaka K 2003 IEICE Transactions on Information and Systems E86-D 1228
[17] Ikeda S, Tanaka T and Amari S 2004 Neural Computation 16 1779
[18] Yedidia J S, Freeman W T and Weiss Y 2005 IEEE Transactions on Information Theory 51 2282
[19] Pelizzola A 2005 J. Phys. A: Math. Gen. 38 R309
[20] Suzuki S, Nishimori H and Suzuki M 2007 Phys. Rev. E 75 051112
[21] Morita T 1957, J. Phys. Soc. Jpn. 12 1060

International Workshop on Statistical-Mechanical Informatics 2007 (IW-SMI 2007) IOP Publishing
Journal of Physics: Conference Series 95 (2008) 012023 doi:10.1088/1742-6596/95/1/012023

9




